Part Number Hot Search : 
FDN358 BH782 BR204 DB101 MB201A2V 10004 SUB75N08 BH782
Product Description
Full Text Search
 

To Download ALM-1106 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  vsd rf_out vdd rf_in bias c c2 c c1 amplifier2 amp1 surface mount 2.0 x 2.0 x 1.1 mm 3 o ay ww note: package marking provides orientation and identification ?a? = product code ?y? = year ?ww? = work week gnd pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 bottom view lna i/o?s : 1. nc 2. rf_in 3. nc bottom paddle : gnd 4. vsd 5. rf_out 6. vdd pin configuration ALM-1106 gps low noise amplifier with variable bias current and shutdown function data sheet description avago technologiess ALM-1106 is a lna designed for gps/ism/wimax applications in the (0.9-3.5)ghz frequency range. the lna uses agilent technologiess proprietary gaas enhancement-mode phemt process to achieve high gain operation with very low noise figures and high linearity. noise figure distribution is very tightly controlled. gain and supply current are guaranteed parameters. a cmos compatible shutdown pin is included to turn the lna off and provide a variable bias. the ALM-1106 lna is useable down to 1v operation. it achieves low noise figures and high gain even at 1v, making it suitable for use in critical low power gps/ism band applications. simplified schmatic features ? advanced gaas e-phemt ? low noise: 0.8 db typ ? high gain : 14.3 db typ ? low component count ? high iip3 and ip1db ? wide supply voltage: 1v to 3.6v ? shutdown current : < 0.1ua ? cmos compatible shutdown pin (vsd) current @ 2.85v : 90ua ? adjustable bias current via one single external resistor/voltage ? small footprint: 2x2mm 2 ? low profile: 1.1mm typ ? ext matching for non-gps freq band operation specifications (25 deg): at 1.575ghz, 2.85v 8ma (typ) ? gain = 14.3 db (typ) ? nf = 0.8 db (typ) ? iip3 = 4.7 dbm (typ) ? ip1db = 1.8 dbm (typ) ? s11 = -11.8 db (typ) ? s22 = -12.4 db (typ) typical performance @ 1.0v supply s21 = 12.3db nf = 1.0db ids = 3.6ma note: measurements obtained using demoboard described in figure 4.
2 absolute maximum ratings [1] product consistency distribution charts [5,6] symbol parameter units absolute maximum vds drain - source voltage[2] v 3.6 ids drain current[2] ma 15 pdiss total power dissipation [3] mw 54 pin max. rf input power dbm +10 tch channel temperature c 150 tstg storage temperature c -65 to 150 ch_b thermal resistance [4] c/w 232 figure 1. gain @ 1.575ghz; lsl = 12.7db, nominal = 14.3db, usl = 15.8db figure 2. nf @ 1.575ghz; nominal = 0.8db, usl = 1.3db -3 std +3 std stdev = 0.4 12 13 14 15 16 17 0 1000 2000 3000 4000 +3 std stdev = 0.1 0 0.3 0.6 0.9 1.2 1.5 0 1000 2000 3000 4000 +3 std stdev = 1.8 3579111315 0 500 1000 1500 2000 2500 3000 figure 3. ids @ 1.575ghz; nominal = 8ma, usl = 13ma notes: 5. distribution data sample size is 10k samples taken from 3 different wafers and 3 different lots. future wafers allocated to t his product may have nominal values anywhere between the upper and lower limits. 6. measurements are made on production test board, which represents a trade-off between optimal gain, nf, iip3, ip1db and vswr. circuit losses have been de-embedded from actual measurements. notes: 1. operation of this device above any one of these parameters may cause permanent damage. 2. assuming dc quiescent conditions. 3. board (package belly) temperature t b is 25c. derate 4.32mw/c for t b > 137 c. 4. channel-to-board thermal resistance measured using 150c liquid crystal measurement method.
3 electrical specifications t a = 25 c, dc bias for rf parameter is vdd = vsd = +2.85v @ 8ma (unless otherwise specified) vdd = +2v, vdd= +1.5v & vdd= +1.0v, freq=1.575ghz ? typical performance (vsd=vdd, r1=0 ohm) symbol parameter and test condition units min. typ max. g gain db 12.7 14.3 15.8 nf noise figure db - 0.8 1.3 ip1db input 1db compressed power dbm 1.8 iip3 input 3rd order intercept point (2-tone @ fc +/- 2.5mhz) dbm 4.7 s11 input return loss db -11.8 s22 output return loss db - 12.4 ids supply current ma 8 13 ish shutdown current @ vsd = 0v ua 0.1 vds supply voltage v 2.85 ip1db 1710m out of band ip1db (dcs 1710mhz) blocking dbm 2.9 iip3 out out of band iip3 (dcs 1775mhz & 1950mhz) dbm 5.5 symbol parameter and test condition units vdd=2v vdd=1.5v vdd=1.0v g gain db 15 14.2 12.3 nf noise figure db 0.8 0.9 1 ip1db input 1db compressed power dbm -1.4 -2.4 -3.8 iip3 input 3rd order intercept point (2-tone @ fc +/- 2.5mhz) dbm 7.3 4.9 5.2 s11 input return loss db -13.8 -11.5 -8 s22 output return loss db -15.5 -14.5 -11.7 ids supply current ma 13 7.5 3.6 ish shutdown current @ vsd = 0v ua 0.1 0.1 0.1 vds supply voltage v 2 1.5 1.0 ip1db 1710m out of band ip1db (dcs 1710mhz) blocking dbm -0.3 -1.9 -2.9 iip3 out out of band iip3 (dcs 1775mhz & 1950mhz) dbm 8.7 5.8 3 table 1. performance table at nominal operating conditions table 2 ? typical performance at low operation voltages with r1 (see fig 5) set to 0 ohm vdd= vsd = +2.85v, r1 = 18k ohm, freq=1.575ghz ? typical performance
4 gps lna rf in rf out mar 2005 tl. agilent technologies h 0.010 w 0.0220 e 3.48 gnd gnd vdd sd 0.1 f 12 ? / / 33nh 100pf 6.8pf 10nh 5.6nh 4.7nh 6.8pf 18k figure 4. demoboard and application circuit components figure 5. demoboard schematic +vdd rf_out vsd rf_in johanson 0402 johanson 0402 johanson 0402 toko ll1005 bias l l3 r= l=4.7 nh c c5 c=6.8 pf l l2 l=10 nh l l1 l=5.6 nh r r1 r=18 kohm c c4 c=6.8 pf c c2 c c3 c=0.1 uf prl prl1 l=33 nh r=12 ohm c c1 amplifier2 amp1 notes ? l1 and l2 form the input matching network. the lna module has a integrated coupling and dc-blocking capacitors at the input and output. best noise performance is obtained using high-q wirewound inductors. this circuit demonstrates that low noise figures are obtainable with standard 0402 chip inductors. replacing l1, l2 and l3 with high- q wirewound inductors (eg. cilcraft 0402cs series) will yield 0.1db lower nf and 0.6db higher gain. ? l3 is an output matching inductor. ? c5 is a rf bypass capacitor. ? prl1 is a network that isolates the measurement demoboard from external disturbances. c3 and c4 mitigates the effect of external noise pickup on the vsd and vdd lines. these components are not required in actual operation. ? bias control is achieved by either varying the vsd voltage without r1 or fixing the vsd voltage to vdd and varying r1. typical value for r1 is 18k ohm for 8ma total current at vdd=+2.85v. ? higher gain and ip3 performance can be obtained by increasing the supply current. this can be achieved by reducing the value for r1 to obtain desired current. ? for low voltage operation such as 1.5v or 1.0v, the r1 may be omitted and vsd connected directly to the supply pins.
5 ALM-1106 typical performance curves, r1 = 18k ohm (at 25c unless specified otherwise) figure 6. gain vs vdd vs freq figure 10. ids vs vdd vs freq figure 9. ip1db vs vdd vs freq figure 8. iip3 vs vdd vs freq figure 7. nf vs vdd vs freq 9 10 11 12 13 14 15 16 2.4 2.6 2.8 3 3.2 3.4 vdd (v) gain (db) 1.575ghz 2ghz 2.4ghz 0.7 0.75 0.8 0.85 0.9 0.95 2.4 2.6 2.8 3 3.2 3.4 vdd (v) nf (db) 1.575ghz 2ghz 2.4ghz 0 2 4 6 8 10 12 2.4 2.6 2.8 3 3.2 3.4 vdd (v) iip3 (dbm) 1.575ghz 2ghz 2.4ghz 0 1 2 3 4 5 6 2.4 2.6 2.8 3 3.2 3.4 vdd (v) ip1db (dbm) 1.575ghz 2ghz 2.4ghz 0 2 4 6 8 10 12 2.4 2.6 2.8 3 3.2 3.4 vdd (v) ids (ma) 1.575ghz 2ghz 2.4ghz
6 ALM-1106 typical performance curves, r1 = 18k ohm (at 25c unless specified otherwise) figure 11. gain vs vdd vs temp figure 12. nf vs vdd vs temp figure 13. iip3 vs vdd vs temp figure 14. ip1db vs vdd vs temp figure 15. ids vs vdd vs temp 11 12 13 14 15 16 2.4 2.6 2.8 3 3.2 3.4 vdd (v) gain (db) 25 deg -40 deg 85 deg 0 0.2 0.4 0.6 0.8 1 1.2 1.4 2.4 2.6 2.8 3 3.2 3.4 vdd (v) nf (db) 25 deg -40 deg 85 deg 0 1 2 3 4 5 6 7 2.4 2.6 2.8 3 3.2 3.4 vdd (v) iip3 (dbm) 25 deg -40 deg 85 deg 0 0.5 1 1.5 2 2.5 3 2.4 2.6 2.8 3 3.2 3.4 vdd (v) ip1db (dbm) 25 deg -40 deg 85 deg 4 5 6 7 8 9 10 11 12 2.4 2.6 2.8 3 3.2 3.4 vdd (v) ids (ma) 25 deg -40 deg 85 deg
7 ALM-1106 typical scattering parameters at 25c, v dd = 2.85v, i ds = 8 ma freq. s11 s21 s12 s22 (ghz) mag. ang. (db) mag. ang. (db) mag. ang. mag. ang. 0.1 0.998 -4.7 15.01 5.633 176.7 -47.96 0.004 89.2 0.526 -5 0.5 0.946 -23.5 14.62 5.381 153.1 -34.42 0.019 78.6 0.503 -19 0.9 0.866 -40.4 13.72 4.854 134.1 -29.90 0.032 71.8 0.475 -31.9 1 0.843 -44.4 13.47 4.714 129.7 -29.37 0.034 70.5 0.468 -34.9 1.1 0.821 -48.2 13.20 4.573 125.5 -28.64 0.037 69.3 0.459 -37.9 1.2 0.8 -52 12.95 4.44 121.5 -27.96 0.04 68.5 0.451 -40.5 1.3 0.78 -55.8 12.69 4.31 117.6 -27.33 0.043 67.4 0.443 -43.2 1.4 0.757 -59.7 12.42 4.178 113.6 -26.94 0.045 66.5 0.435 -45.8 1.5 0.731 -63.4 12.13 4.039 109.7 -26.38 0.048 65.7 0.428 -48.2 1.6 0.705 -66.8 11.83 3.905 106.1 -26.02 0.05 64.8 0.421 -50.7 1.7 0.683 -69.7 11.55 3.78 102.9 -25.51 0.053 64.7 0.414 -52.8 1.8 0.663 -71.6 11.29 3.669 99.5 -25.19 0.055 63.9 0.408 -55.5 1.9 0.643 -73.4 10.99 3.544 96 -24.73 0.058 63.1 0.399 -58 2 0.623 -75.3 10.48 3.343 97 -24.58 0.059 66.3 0.398 -58.8 2.1 0.603 -77.2 10.25 3.253 93.5 -24.15 0.062 65.5 0.398 -59.6 2.2 0.583 -79 10.01 3.165 90.2 -23.74 0.065 64.6 0.397 -60.3 2.3 0.563 -80.9 9.77 3.079 87 -23.48 0.067 63.8 0.396 -61.1 2.4 0.543 -82.8 9.49 2.983 83.8 -23.10 0.07 63 0.396 -62.1 2.5 0.522 -85.3 9.23 2.895 81.1 -22.73 0.073 62.3 0.395 -62.7 3 0.434 -105.2 7.95 2.498 66.6 -21.21 0.087 56.9 0.345 -74.4 3.5 0.334 -119.5 6.47 2.105 57.3 -20.26 0.097 54 0.324 -86.8 4 0.302 -132.1 6.25 2.054 48.8 -18.42 0.12 53.7 0.271 -108 4.5 0.297 -141.8 5.50 1.883 33.1 -16.95 0.142 43.4 0.265 -113.3 5 0.274 -157.1 4.44 1.667 23.9 -15.97 0.159 38 0.259 -118.6 5.5 0.254 -170.1 3.63 1.519 16.1 -15.04 0.177 33.7 0.26 -133.2 6 0.211 178.7 2.82 1.383 6.3 -14.11 0.197 25.3 0.249 -142.7 6.5 0.204 165.4 1.89 1.243 -0.7 -13.64 0.208 16.7 0.263 -154.7 7 0.189 137.1 1.56 1.197 -5.4 -13.27 0.217 12.7 0.306 -171.3 7.5 0.193 117.3 1.03 1.126 -14.4 -12.88 0.227 9.5 0.31 179.8 8 0.206 90.6 0.87 1.105 -22.2 -12.40 0.24 4.7 0.314 170.8 ALM-1106 typical noise parameters, v dd = 2.85v, i ds = 8ma freq (ghz) fmin (db) opt mag. opt ang. rn/50 nf @ 50db 0.5 0.53 0.64 13.8 0.41 1.46 0.9 0.65 0.69 32.2 0.28 1.07 1.5 0.8 0.71 47.4 0.24 1.22 1.7 0.82 0.69 58.1 0.22 1.14 2 0.91 0.68 59.5 0.23 1.1 2.4 0.93 0.64 71.3 0.27 1.72 3 1.21 0.52 99.2 0.16 1.45 3.5 1.33 0.44 135.8 0.12 1.6 4 1.69 0.35 161.3 0.08 1.27 4.5 1.73 0.31 171.3 0.06 1.47 5 1.82 0.32 -179.6 0.06 1.65 5.5 1.98 0.34 -171.2 0.08 2.16 5.8 2.37 0.43 -174.8 0.14 2.88
8 2.00 0.10 2.00 0.10 1.10 0.10 topview sideview pin 1 o ay ww (4x) 0.65 0.40 r 0.15 (6x) 0.36 1.66 (6x) 0.10 (6x) 0.43 (3x) 0.94 bottom view 6 4 pin 1 3 package dimensions device orientation user feed direction cover tape carrier tape reel tape dimensions notes: 1. measured from centerline of sprocket hole to centerline of pocket 2. cumulative tolerance of 10 sprocket holes is 0.20 all dimensions in millimeters unless otherwise stated. existing thermal ground to pad clearance = 0.16mm samsung thermal ground to pad min clearance = 0.25mm
9 reel dimensions front view back front see detail "x" recycle logo ? 178.0 1.0 back view embossed ribs raised: 0.25mm, width: 1.25mm ? 51.2 0.3 slot hole 'o' 14.4* max front back ? 178.0 1.0 ? 55.0 0.5 60? slot hole 'b' r5.2 r10.65 65? 45? 7.9 - 10.9** 8.4 +1.5* - 0.0
part number no. of devices container ALM-1106-tr1 3000 7" reel ALM-1106-tr2 10000 13" reel ALM-1106-blk 100 antistatic bag part number ordering information for product information and a complete list of distributors, please go to our web site: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies, pte. in the united states and other countries. data subject to change. copyright ? 2006 avago technologies pte. all rights reserved. obsoletes 5989-3889en av01-0028en - february 22, 2006


▲Up To Search▲   

 
Price & Availability of ALM-1106

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X